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Two problems of similar mathematical structure are studied : the thermocapillary 
motion of bubbles and the electrophoresis of colloidal particles. The thermocapillary 
motion induced in a cloud of bubbles by a uniform temperature gradient is 
investigated under the assumptions that the bubbles are all the same size, that the 
surface tension is high enough to keep the bubbles spherical, and that the bubbles are 
non-conducting. In the electrophoresis problem, the particles, identical spheres 
having a uniform zeta potential, are suspended in an electrolyte under conditions 
that make the diffuse charge cloud around each particle small when compared with 
the particle radius. For both problems, it is shown that in a cloud of n particles 
surrounded by an infinite expanse of fluid, the velocity of each sphere under creeping 
flow conditions is equal to the velocity of an isolated particle, unchanged by 
interactions between the particles. However, when the cloud fills a container, 
conservation of mass shows that this result cannot continue to  hold, and the average 
translational velocity must be calculated subject to  a constraint on the mass flux. 
The computation requires ' renormalization ', but it is shown that the renormalization 
procedure is ambiguous in both problems. An extension of Jeffrey's (1974) second 
group expansion, together with the constraint of conservation of mass, removes the 
ambiguity. Finally, it is shown that the average thermocapillary or electrophoretic 
translational velocity of a particle in the cloud is related to the effective conductivity 
of the cloud over the whole range of particle volume fractions, provided that the 
particles are identical, non-conducting and, for the thermocapillary problem, 
inviscid. 

1. Introduction 
If a temperature gradient is applied to  a viscous fluid containing bubbles, the 

bubbles move towards the hotter fluid, owing to the dependence of surface tension 
on temperature. Similarly, if an electric field is applied to an electrolytic solution 
containing charged particles, the particles move in directions dictated by their 
charge. Under conditions described below, the problems of thermocapillary motion 
and electrophoresis are mathematically similar, the governing equations being the 
same except for one boundary condition. We wish to calculate the average velocity 
of a particle in a cloud (we shall understand the word 'particle ' to encompass bubbles 
as well) when the cloud is placed in a uniform gradient of temperature or electric 
potential and the particle concentration is low. The problem has several featurea in 
common with that of calculating the average settling velocity of a particle in a 
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sedimenting cloud, a problem that was the subject of a paper by Professor Batchelor 
(Batchelor 1972) that gave a strong stimulus to research on the mechanics of 
suspensions. Its significance lay not just in its calculation of a sedimentation 
velocity, but equally in the way it addressed wider themes, such as the use of 
statistical methods to calculate average properties of suspensions and the solution of 
a subtle technical problem, namely how to express the average properties of a 
suspension of particles in terms of convergent integrals. The success of this and later 
work on the mechanics of suspensions, together with parallel progress on other flow 
systems cont,aining small lengthscales, lead Batchelor (1976) to identify a new 
branch of specialization in fluid mechanics : microhydrodynamics. 

One of the technical difficulties that  must be solved during a calculation of the bulk 
properties of a suspension is the appearance of non-convergent integrals in various 
formal expressions for the quantities of interest, such as the average sedimentation 
velocity of the particles or the effective viscosity of a suspension. Earlier workers had 
already noted and tackled this difficulty (Burgers 1942; Pyun & Fixman 1964; see 
also references in Jeffrey 1977) and so its widespread occurrence was known when 
Batchelor (1972) published his method for overcoming it. Because of this, the new 
method, later called renormalization, was quickly applied to other problems (for 
example, Batchelor & Green 1972; Jeffrey 1973; Chen & Acrivos 1978). In addition, 
the method attracted a great deal of examination for its own sake, and was later 
refined and extended in many different ways (Jeffrey 1974; Willis & Acton 1976; 
McCoy & Beran 1976; Goddard 1977; O’Brien 1979; Felderhof, Ford & Cohen 1982). 

Several concerns can be identified in the papers that reanalysed Batchelor’s 
method of renormalization. The first was whether renormalization was of physical or 
mathematical significance. It must be remembered that both Rayleigh (1892) and 
Einstein (1906) had evaluated non-convergent sums or integrals in the course of 
deriving firmly established results, and consequently non-convergence seemed to 
some to be a purely mathematical issue and to  others a detail requiring just some 
additional physical justification. Thus the first notable feature of the new approach 
was its stress on the necessity of renormalization. In  this regard, an important benefit 
of tackling the sedimentation problem first (rather than, say, the viscosity problem) 
was the fact that the integrals were always infinite, and a discussion of ‘physically 
significant ’ evaluations was impossible. 

A second concern, closely related to the first, was a desire to simplify a key step 
in the original analysis which entailed looking ‘for a quantity whose mean is known 
exactly from some overall condition or constraint in the specification of the problem 
and whose value at xo [the position of a test particle - notation similar to Batchelor’s 
is defined in $31 has the same long-range dependence on the presence of a sphere a t  
x , + r  as the velocity of the test sphere; and, once found, the difference between 0 
[the sedimentation velocity] and the mean of this quantity can be expressed as an 
integral.. .which can be legitimately.. .evaluated explicitly. ’ This description and the 
finding of renormalizing quantities were not easy to grasp, and even rereading 
Batchelor (1972) today, one is struck by the difficulty of some of the ideas ; who, for 
example, would find it obvious to choose the divergence of the deviatoric stress for 
use in Batchelor’s equation (3.10)? 

In  fact, a discussion of the physical differences between a cloud of particles that 
fills a container and one that is surrounded by clear fluid appears as early as the 
second paragraph of Batchelor (1972), and this is the essence of a physical 
interpretation. Nevertheless, renormalization was presented as a means of removing 
a convergence problem which had a physical interpretation, rather than as a means 
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of accounting for backflow that had a mathematical formulation. Similarly, although 
it was clearly expected that the renormalizing quantity would be physically related 
to the integrand being renormalized, it was not until Jeffrey (1974) that a 
methodology was introduced that enforced this requirement systematically. The 
inadequacy of the purely mathematical interpretation was clearly displayed when a 
problem was discovered in which several choices of the renormalizing quantity 
appeared to  be possible (Chen & Acrivos 1978), a problem we discuss below. 

Another reason why Batchelor’s method was re-examined stemmed from issues 
connected with the distinction between the value of the external field applied to the 
suspension and the mean value of that  field within the suspension. Ever since the 
investigation of effective viscosity by Einstein (1906), the possible difference between 
the applied field - in other words, the field ‘a t  infinity’ - and the mean field had been 
a point of debate. Investigators studying the electrostatic and elastostatic properties 
of dispersions of particles could formulate problems in which the suspension was 
surrounded by clear fluid or matrix, and thereby they could separate the applied and 
the mean fields. For sedimentation, however, the very nature of the problem made 
it necessary to deal with a space-filling suspension from the outset, leaving these 
issues unresolved. They were addressed in subsequent work (cited above) and the 
results obtained by Batchelor verified ; and although the original method has now 
been filled out in completeness and rigour, i t  has yet to be replaced by an approach 
that is simpler or more direct, a t  any rate for problems to which it is suited. 

Batchelor’s 1972 paper stimulated work in other ways as well. It drew attention 
to  the difference between the sedimentation of a random dispersion of freely moving 
spheres, the sedimentation of a periodic array of spheres and the flow through a 
random array of fixed spheres. The last case is a ‘strong interaction’ problem that 
cannot be solved by Batchelor’s method, and the efforts to  understand this and find 
an alternative method lead to the averaged-equation approach (Childress 1972 ; 
Saffman 1973; Howells 1974; Hinch 1977). It is interesting to  note that the new 
approach had first to explain Batchelor’s method in its own terms (Hinch 1977). 
Finally, i t  is instructive to  list the topics not treated in the original paper which 
received attention in later years. For example, the paper contains comments on the 
importance of particle motions for the probability distribution for the particle 
positions, even though in the actual calculation, specific distributions were simply 
assumed. This lead was taken up by many later papers, and the motions of pairs of 
particles under the influence of hydrodynamic and non-hydrodynamic forces have 
been explored in detail. Other extensions to the original investigation include the 
addition of non-hydrodynamic effects, such as Brownian motion, the effects of 
unequal sizes and of inhomogeneous conditions. 

It is a tribute to Batchelor’s idea that a new problem should be discovered that 
leads us to re-examine the basis of his method. This problem, which concerns the 
thermocapillary motion or electrophoresis of particles, brings a new element into the 
analysis and adds another example of a well-known difficulty. The new element 
concerns the ‘applied field ’. Specifically, when Jeffrey (1974) presented a general 
treatment of Batchelor’s renormalization, all the problems known a t  that  time could 
be summarized symbolically in terms of a quantity S to be averaged and a quantity 
H - the applied field - whose average was known. In  the thermocapillary and 
electrophoretic problems, however, there are two quantities whose averages are 
specified and which determine the velocities of the particles, because both the applied 
field (electric or thermal) and the volume flux across any boundary spanning the 
suspension are known and can be used as renormalizing quantities. The well-known 
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difficulty is the possibility, first discovered by Chen & Acrivos (1978), that a study 
of two-particle interactions may not be sufficient to prove which of several choices 
gives the correct renormalization strategy. 

The study of thermocapillary phenomena has taken on new significance with the 
development of the space shuttle and the opportunities for experimenting and 
manufacturing under near-weightless conditions. For example, unwanted gas 
bubbles in a mixture are usually removed by buoyancy forces, but this force is not 
available in an orbiting laboratory. In  fact, even on Earth a viscous fluid can retain 
bubbles for a significant length of time if the bubbles are small enough, and under 
near-weightless conditions forces other than buoyancy must be found to move 
bubbles, which is why thermocapillary forces are of interest. The motion of a single 
bubble was studied by Young, Goldstein & Block (1959) and the motion of two 
bubbles by Meyyappan, Wilcox & Subramanian (1983), Meyyappan & Subramanian 
(1984), Anderson ( 1 9 8 5 ~ )  and Feuillebois (1989). All of these two-bubble papers 
noted the remarkable result that two equi-sized bubbles move with the same velocity 
as one bubble; Meyyappan et al. (1983) showed this numerically for the case of 
axisymmetric motion and Feuillebois proved it analytically, while Mcyyappan & 
Subramanian and Anderson showed that, for bubbles a t  any angle to the applied 
temperature gradient, the result was true to the order to which they carried out their 
approximations. The study of electrophoretic phenomena, on the other hand, has 
important applications in areas concerned with the fractionation of mixtures of 
proteins or biological cell populations. Recall that electrophoresis has a venerable 
history, beginning with the work of Smoluchowski in the early part of this century ; 
see Hunter (1981) for an extensive discussion of particle electrophoresis. But, for our 
purpose, the work of Reed & Morrison (1976) is especially noteworthy in that they 
showed that two identical spheres with thin double layers would move with the same 
velocity in an electric field as one sphere (the Smoluchowski velocity), irrespective of 
their separation and orientation in the electric field. 

In  what follows, we shall extend the studies referred to above and explore their 
consequences for the averaging of thcrmocapillary and electrophoretic velocities in 
clouds of particles. The presentation is organized as follows. For the sake of 
simplicity, we first concentrate on the thermocapillary problem and then show how 
the electrophoresis problem can be addressed using the same mathematics. Thus, in 
$2 thermocapillary motion is discussed in detail and we show how particles in a cloud 
translate with the same velocity that one bubble would have if it were all alone. 
Thermocapillary motion of a space-filling cloud and the effect of backflow are then 
taken up in $ 3  where the renormalization ambiguity is set forth in detail. Next, the 
formal series for the many-body interactions is developed in $4, where we discover 
how to reduce the integral based on three-body interactions to one based on two- 
body interactions. Once the thermocapillary problem has been discussed, it is a 
simple matter to show how the analysis can be adapted for electrophoresis. This is 
done in $5  where we show that particles in a cloud of identical spheres move at  the 
same velocity as an isolated sphere. In $6, we derive a surprising result which relates 
uniquely the average thermocapillary or electrophoretic velocity of a test particle to  
the effective conductivity of the suspension over the whole range of the particle 
concentration c. The paper concludes with a discussion in $7. 

2. Equations of motion 
Consider, first, a bubble in an infinite expanse of fluid of viscosity ,u and density 

p,  in which a uniform, constant temperature gradient N far from the bubble is 
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imposed. Let the surface tension of the interface between the bubble and the fluid be 
y ,  and assume that y decreases linearly with temperature T, and that the surface 
tension is high enough to  keep the bubble spherical (of radius a). Then, as shown by 
Young et al. (1959), the bubble moves with a velocity 

dY H UyGB = -a--, 
d T  2p 

under the assumptions of low Reynolds number 

and small Marangoni number 

where a is the thermal diffusivity of the fluid. 
We can use these results to non-dimensionalize the equations governing the 

temperature and velocity fields in this limit. Distances are scaled using the bubble 
radius a, the temperature is scaled using aH and the bubble centre is placed a t  the 
origin. We shall denote the dimensionless temperature gradient by h = H/H.  The 
temperature field T is then determined by 

V2T = 0, (2.1) 

VT+h as IxI+co, (2 .2 )  

and n.VT=O on 1x1 = 1. (2.3) 

-vp+v2u = 0, (2.4) 

and v - u  = 0, (2.5) 

u+O as IxI+oo, (2.6) 

uen =Uh..n on 1x1 = 1,  (2.7) 

and a-n-nn-a-n  = 2VT onlxl = 1.  (2-8) 

together with the boundary conditions 

The velocity and pressure fields are scaled with the Young-Goldstein-Block velocity, 
giving 

together with the boundary conditions 

In (2.7) the unknown velocity of the bubble is written as Uh, but since we have scaled 
velocities with the known solution, U will equal 1 for the single-bubble problem. The 
boundary condition (2.8) has been simplified from its usual form using (2.3). The 
solution to these equations, for 1x1 >, 1, is 

and 

where J is the Green function for the Stokes equations: 

(2.9) 

(2.10) 

The solution can be interpreted as follows. From (2.9) we see that the response of the 
bubble to the temperature gradient is equivalent to adding a thermal dipole at the 
bubble centre. Also, a bubble held fixed in a temperature gradient exerts a force on 
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the fluid (Subramanian 1985), but our problem requires the bubble to  be force free, 
and therefore it translates with whatever velocity is needed to create a cancelling 
force. The difference between the two flow fields is a Stokes quadrupole, which is 
represented by (2.10). 

We now wish to consider the problem of n interacting bubbles, all of the same size, 
in an infinite expanse of fluid. We shall suppose that the centre of bubble p is a t  r ,  
and let x p  be a vector from the centre of that  bubble to an arbitrary point x, so that 
x = r p  + x,. Boundary conditions must now be applied on each surface lxpl = 1. We 
shall denote the velocity of bubble p by Up. The case of two bubbles (centres a t  rl 
and r2)  was studied by Anderson (1985a) using the method of reflections, and he 
found that the velocities were given by 

Ul = U2 = h+O(Ix , -XJ8) .  

In  other words, the velocity of one sphere was unaltered by the presence of a second 
to the indicated order of the approximation. We begin by extending Anderson's 
analysis to three spheres and arrive at the equivalent result. In  order to do so, we first 
rewrite some of his intermediate expressions in a more compact form. Anderson 
found that in addition to (2.9) and (2.10) he needed the velocity and temperature 
fields around a bubble in a quadratic temperature field, obtained from the ambient 
field T by evaluating VVT a t  the point r,. I n  dimensional variables, we can write 

T = (VVT),:(xx+~VVlxl-'), (2.11) 

-dy 1 
u = -- (VVT),: V( 1 + +V2) J. 

dT 6p 
(2.12) 

As with the constant-temperature-gradient case, we can interpret these results using 
multipoles. A bubble responds to  a linear temperature gradient by generating a 
quadrupole thermal disturbance and a stresslet (Stokes dipole) velocity disturbance. 
It should be noted that the stresslet flow field decays only as whereas the flow 
field (2.10) decays as IxI-,, which is why it cannot be neglected in interaction 
calculations. 

We now consider three bubbles with centres a t  r l , r2  and r,. Starting with the 
bubble rl in the temperature gradient h, we find the disturbance temperature field a t  
bubble r2 from (2.9). Letting r21 = r2-r1 ,  we find 

This ambient temperature gradient induces a thermal dipole in sphere r2 and gives 
it an additional velocity equal to VT,,. However, the velocity field (2.10) around 
sphere rl creates an ambient velocity field a t  bubble r2 equal to 

Thus the total change in the velocity of bubble r2 is VT,, + upl = 0. We now continue 
the method of reflections to  sphere r,. 

The velocity of bubble r3 will consist of contributions from the disturbances arising 
from the applied temperature gradient being reflected from bubble r,  and from r2 
together with the disturbances being reflected from bubble r,  to r2 and then on to r,. 
The last effect is the one we are interested in. We saw above that bubble rl induces 
a thermal dipole in bubble r2.  This will produce a change in the ambient gradient near 
r3 equal to  

iVT,l* (3r32 r32/Ir32l5 -1/lr3213). 
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Bubble r3 will therefore pick up a velocity equal to this. Also there is a relative 
velocity between bubble rz and the ambient flow at r2 equal to VT,,, and this will 
cause a velocity disturbance at r3. The ambient velocity a t  r3 will be changed by 

which cancels the temperature-gradient contribution. Finally we must consider the 
perturbations due to the Stokes dipole field given in (2.12). There are two 
contributions to this, of which the first comes from the second derivative of the 
temperature field (2.9) and the other from the rate-of-strain field obtained from the 
flow field (2.10). It has been shown by Anderson that these also cancel. 

We have seen then that two and three spheres move in an applied temperature 
gradient with velocities unchanged from the single-sphere case. We now wish to 
extend this to n spheres. Returning to (2.10), we can rewrite it using standard 
identities as 

u = +h*VVlxl-l = V($h*VlXl-l). (2.13) 

From this, we see that if we write (2.9) for the temperature field as 

T = h * x + $ ,  

we can rewrite (2.10) as u = -V$.  We now postulate that the last two expressions 
hold true for the flow around n spherical bubbles, and replace (2.1)-(2.8) with the 
equations 

T = h . x + $ ,  (2.14) 

and u = -V$,  (2.15) 

where VZ$ = 0, (2.16) 
together with the boundary conditions 

V$+O as IxI+m, (2.17) 

n.V$ = - h . n  on lxpl = 1 .  (2.18) 

The velocity field (2.15) will automatically satisfy the Stokes equations with the 
pressure equal to zero. In addition, the kinematic condition on the spheres' surfaces, 
that sphere p moves with velocity U p ,  is 

u - n  = U P .n = -n .V$ =hen  on lxpl = 1,  (2.19) 

meaning Up = h for all p. The boundary condkion left to verify is the stress 
boundary condition 

-n . (VV$)+nn. (VV$)-n  = h+V$ on lxpl = 1 (2.20) 

To prove this we use an expansion of q5 about r p ,  the centre of sphere p .  To introduce 
this expansion we consider first the special case of just two spheres. The method of 
twin multipole expansions calculates $ for this case by expressing it as a superposition 
of multipole expansions (Jeffrey 1973). The expression for $ is valid everywhere 
outside the spheres, but it is expressed in more than one coordinate system (Jeffrey 
1973, equation 5.2). The coefficients in the expansion are found by transforming it 
entirely into the coordinate system of one sphere using addition theorems for 
spherical harmonics (Jeffrey 1973, equation 5.3) and applying boundary conditions. 
Here, although our aim is not to calculate coefficients, but rather to verify (2.20), we 
can still use the transformation idea extended to n spheres. Now $ will be a 
superposition of n multipole series in decaying harmonics, with each series centred on 
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one of the n spheres. But each multipole series can be transferred to the centre of 
sphere p ,  where it will become a series of growing harmonics, just as can be seen in 
the two-sphere case. Thus $ can be expanded about r p  in an expansion of growing 
and decaying harmonics valid in a spherical shell centred at r p  whose inner surface 
is Ixpl = 1 and whose outer surface touches the surface of the nearest neighbour to rp .  

Let us denote a general decaying harmonic of order -n -1  by $-,-,. Then 
(xIzn+l $-n-l will be a growing harmonic of order n. We now write the expansion of 
$ about rp  as 

$ = - $  lh-V1xP1-' + 2 [ ( n  + I)lxpIzn+l + nI9-n-1. (2.21) 
n 

In  this form, (2.18) is automatically satisfied. Using the identity 

xp.V$-n-l  = ( - n -  1 )  $-n-l ,  (2.22) 

together with the fact that x p  = n on lxpl = 1, one obtains, on IxpJ = 1, 

n. (VV$) = gnh-n -ih + C (272 + l ) ( n  + 1)(n - 1) n$-n-l - (2n + 1 )  V$-n-l ,  

nn.(VV$).n = 3nh.n+C (2n+ l ) (n+l )nn$-n. - l ,  

whence one can easily verify that (2.20) holds. Thus the general result is proved. 
Incidentally, since 9 is harmonic, (2.15) satisfies the full Navier-Stokes equations, 
with the pressure given by Bernouilli's equation, as long as the Marangoni number 
remains small. This exact solution to the thermocapillary problem was also noted 
earlier for the single bubble case by Crespo & Manuel (1983) and Balasubramaniam 
& Chai (1987). 

n 
and 

n 

3. The average velocity of a bubble in a cloud 
Since the velocity of a bubble is unaltered by the presence of other bubbles, it 

might seem that there is no averaging problem to perform. Thus the first 
renormalization strategy would be to suppose that U = U,,,. This is unsatisfactory, 
however, as can be shown by a physical argument. If the cloud of bubbles fills a 
closed container, conservation of volume (the fluid is incompressible) shows that the 
velocity must change, for if we take a surface through the suspensions perpendicular 
to the applied temperature gradient, the rate a t  which volume is displaced by the 
bubbles equals CU,,,, where c is the volume concentration of the bubbles. Since the 
net flux across the surface must be zero, there must be a net backflow of fluid 
reducing the velocity of the bubbles by a factor (1 - c ) .  

A second argument in support of renormalization comes from noting that the exact 
cancellation of the two velocity perturbations only occurs for non-conducting 
bubbles of the same size, because, as Anderson ( 1 9 8 5 ~ )  showed, if the bubbles (or 
drops) have any conductivity, or if they differ in size, there is a familiar l/jx13 non- 
convergent interaction between them. Thus, for the more general conducting-drop 
problem, we must renormalize, and then if we take the limit of zero conductivity, we 
are led to a renormalized integral, not the result U = V,,,. However, although these 
arguments help to settle the question of whether or not renormalization is needed, we 
must still decide on the renormalization procedure. Recall that  from the overall 
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specification of the problem we have constraints on u(r), the velocity a t  the origin due 
to a bubble a t  r, and VT(r), the temperature gradient a t  the origin. They are 

uP(r)dr = 0 and (VT-N)P(r)dr = 0. 

Both of these are non-convergent integrals that cannot be evaluated. From the 
results above, however, i t  can be shown that the two integrands have the same 
dependence on r when the bubbles do not overlap the origin ( r  > l),  but they are 
different when the bubbles overlap the origin. Therefore the integral 

s s 
,. 

will be convergent for any value of A,, provided h, = A,, since both terms in brackets 
will then be zero for r > 2. The expression evaluates to  -&cH and therefore the 
mean velocity of the particles in the suspension is 

if the particles are non-conducting. Anderson’s result is obtained by setting A, = 1.  
In  fact, even when the particles are conducting or have different sizes, there still 
exists an indeterminacy, because A, and A, must satisfy only one equation, namely 
that the non-convergent terms in the two sets of brackets cancel. Analogous 
considerations hold for particles undergoing electrophoresis (Anderson 1986). 

Chen & Acrivos (1978) discovered a similar indeterminate situation, by finding 
several possible convergent two-body integrals. As here, the integral could 
apparently be put in a convergent form without renormalization and two 
renormalized integrals were found. Since these authors were able to resolve the 
indeterminacy by considering three-body interactions, where only one choice gave a 
convergent integral, we now extend the group expansion approach of Jeffrey (1974) 
to include the extra field present, in order to investigate the properties of the 
expansion and resolve the indeterminacy. 

4. Formal series for three-body interactions 
I n  order to write down the integral for three-body interactions, we must add to the 

notation in Jeffrey (1974) the fact that the velocity of a bubble in the laboratory 
frame now depends upon two applied fields, viz. the ambient temperature gradient 
and the ambient velocity. We begin by considering a test bubble at the origin 
surrounded by n others, the whole cloud being immersed in a temperature gradient 
H a n d  an ambient velocity ti. At the end of the calculation, we shall set u to zero, but 
we have seen in the method-of-reflections solution above that we must consider 
changes in the ambient flow. We shall write U(Wn ; a; a) as the general notation for 
the velocity of the test bubble, W8 being the set of position vectors rp of the other 
bubbles. We define incremental velocities in the manner of Jeffrey (1974). Thus 
U,( ; H; ti) is the velocity of a single sphere in an ambient temperature gradient H 
and a velocity field ti. With suitable non-dimensionalization we know 

Uo( ; H ;  a) = R+ ti. 
We next consider the test bubble a t  the origin with a second bubble (a first 
neighbour) at rl. The velocity of the test bubble is now U(r, ; H ;  ti). From this we 
define the increment Ul due to  the second sphere as 
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Now since two bubbles respond to an ambient velocity il by each increasing its 
velocity by the same speed a, it  follows that U, is independent of u. Therefore 

Ul(r l ;H;u)  = Ul(rl; H ; 0 )  = U(rl;H;O)-Uo(;H;O). 

In  addition we have seen that two bubbles move a t  the same speed as one, so in 

The continuation to a third bubble (neighbours a t  rl and 1,) uses the obvious 
this problem U, = 0, but in general this would not be so. 

notation 

U2(r l r , ;H;a)  = U ( r 1 r 2 ; R ; a ) -  U l ( r l ; H ; u ) -  Ul(r2;H;n)-  U 0 ( ; H ; a ) ,  
Again we see that U, is independent of ti and, for our bubble problem, is actually 
identically zero. 

The first group expansion is the generalization of the non-renormalized integral. It 
consists simply of averaging the velocity increments just defined : 

0 = U, + Ul(rl ; H ;  a) P(r ,  10) dr, + U,P(r,  r2 10) dr, dr, + . . . . s 
Since U, = U, = 0, etc. we again arrive a t  the unphysical result U =  U, = U,,,. 
This is different from the previously known case of Chen & Acrivos (1978) in which 
the expansion broke down visibly a t  the three-body term by giving a non-convergent 
integral. 

The second group expansion corresponds to generalizing the renormalized integral. 
To introduce the notation required to  write this down, we shall ignore for the 
moment the fact that  U, = U, = 0. It is not true in the more general case of drops 
with non-zero conductivity, and we need to  write down the general asymptotic 
relations which hold when the spheres are far apart in order to obtain the second 
expansion. The latter is obtained by rewriting the method-of-reflections results 
above in a general notation. To do this we need a notation for fields near the origin 
produced by distant spheres. Consider first a sphere by itself a t  r,. The temperature 
gradient a t  the origin is H(r,;ir), meaning the field produced by a sphere a t  rl 
immersed in an ambient gradient H. When there are no spheres present, the field 
a t  the origin is just the applied field H,  so we can define an increment in H to be 
Hl(rl ; @ = H(rl ; ir) - B. This is the field $V( l/lxl) given in (2.9). The velocity field 
a t  the origin is u(rl ; H ;  i i) ,  meaning a sphere a t  rl moving because of the field H and 
ambient flow a. Again there will be a velocity increment : 

ul(rl ; H ;  a) = u(r, ; R; P )  - P. 

This will be independent of u, so 

ul(rl ; H ;  a) = ul(rl ; R; 0). 

The two-body integral of the second group expansion is now the obvious 
generalization of Jeffrey (1974) : 

s( ul(r1 ; H; WW, I 0) - U,C ; Hl(rl ; ir) ; u , ~ ,  ; R; 0)) w,)) dr,. 

This is the integral evaluated by Anderson. Since U, is zero, it reduces to a one- 
particle integral and gives the result 

u= (1-3) u,,,. 
We now need to  consider two spheres far from the test sphere. We can extend our 
notation in the obvious way. H2(rl r2 ; ir) is the increment at the origin due to spheres 
a t  I, and r,, while uz(rl r,; H; a) is the increment in the fluid velocity at the origin. 
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We shall not repeat the elaborate asymptotic arguments needed to establish the 
three-body term in the second (renormalized) expansion, but write it down as the 
obvious extension of Jeffrey (1974). It is 

+ U& ; H 1 P 1 ;  HIP, ; El) ; HlP, ; m ; 0)) W J ~ ( r 2 ) ~  dr, dr,. 

We can now integrate over rl and r2 and obtain the O(c2) term. First we simplify. We 
know that U, = U, = 0. So we need consider only the last two terms. 

Since u = - Vq3 outside the particles, the third term U,( ; H, ; u,) will be zero unless 
one of the particles overlaps the origin, and in that case u, = 0 because the velocity 
of two bubbles equals the velocity of one particle. Therefore the third term is non- 
zero only if lrll < 1, when we have 

- ~ o ( ; f f 2 ; ~ 2 ) ~ ( ~ l ~ z ) =  - H z ( r l r 2 ; i r , f V 2  Irl)P(rl). 
Now we perform the integration by fixing r2-r1 = s and integrating first over rl 
followed by integration over s. The integral over rl is just the volume integral of H, 
over the spherical bubble, which equals the thermal dipole strength of the bubble S,. 
The integral becomes 

~~H2(r1r2;M1)(11r2)dl ldr2  = s S l ( ~ Z ; m m * l ~ l ) d r , .  

Finally the last term in the three-body integral can be treated the same way to 
become 

Hence the three-body velocity problem reduces to the two-body heat conduction 
problem. In $6, we shall show that this is part of a more general result. 

5. The electrophoresis problem 
To show that much of the analysis and all of the conclusions derived thus far 

for thermocapillarity apply equally well to charged spheres moving through an 
electrolyte in an electric field we first recall that a single, non-conducting sphere 
moves in a uniform electric field E a t  the Smoluchowski velocity 

as long as the double layer is thin (cf. Hunter 1981). Here e is the dielectric constant 
of the suspending fluid, e0 is the permittivity of free space, 6 is the electrostatic 
potential a t  the surface of the particle (the zeta potential), and p is as before the 
viscosity of the suspending electrolyte. Equation (5.1) applies when the particle 
motion is slow and the diffuse charge thickness (the Debye length K - ' )  is small 
compared with the particle radius a. Viewed on the lengthscale of the particle, fluid 
appears to  slip past the surface at  a speed known as the electro-osmotic slip velocity. 
However, when the details within the thin region adjacent to the surface are resolved 
by, for example, singular perturbation methods, the no-slip condition holds and the 
velocity in the diffuse region joins smoothly to that outside. Inside the diffuse layer 
the Stokes equations must be modified by adding a term to account for the 
electrostatic body force on the fluid due to  the action of the field on the space charge. 



106 A .  Acrivos, D. J .  Jeflrey and D. A .  Saville 

For thin double layers and non-conducting particles, however, we can avoid 
analysing events within the diffuse layer in a consistent fashion by replacing the no- 
slip condition by 

u= U - L  € I 2  [V+ (5 .2)  
P 

and using the Stokes equations without the extra body force. Here U denotes the 
particle velocity, u is the fluid velocity, and - V+ is the local value of t,he electric field 
(Anderson 19853; Russel, Saville & Schowalter 1989). 

The electric field is governed by solutions of Laplace’s equation with the normal 
gradient equal to zero at a particle surface (non-conducting particles). Inside each 
particle, Laplace’s equation applies and the two fields are continuous a t  the interface. 
The potential gradient is constant, i.e. -V$- Eh, far from the particle, while the 
velocity and pressure fields follow from solutions of Stokes equations with the 
velocity vanishing far from the particle. The boundary condition a t  the particle 
surface, (5.2), shows that the normal velocity of fluid and particle match at the 
surface. 

Now, the electrophoresis problem can be restated in a form analogous to that used 
in $ 2  for thermocapillary motion. First, scale the potential on (-uE) and recover 
(2.1)-(2.3) to describe the dimensionless potential outside the sphere. Next scale 
the velocity on the Smoluchowski velocity, EE, , {E / ,~ ,  to obtain (2.4) and (2.5). The 
boundary condition (2.6) still holds but in place of (2.7) and (2.8) we use the 
dimensionless form of (5 .2) ,  namely 

It follows immediately that the dimensionless potential and velocity are given by 
(2.9) and (2.10). 

With these results for a single sphere in hand we can investigate the electrophoresis 
of two identical spheres. Here, as long as the separation exceeds the Debye thickness, 
the spheres move a t  the Smoluchowski velocity irrespective of their separation and 
orientation (Reed & Morrison 1976). This result also holds for n identical spheres 
(Zukoski 1984), as can be seen using the arguments given at the end of $ 2  if (2.8) 

(5.4) 
is replaced by 

U,h=u+VT on Ix,l=l. 

It follows that U p  = 1 and the expansion for q3 in the harmonic series noted earlier 
holds. Accordingly, we have the somewhat surprising result that each particle in a 
cloud of spheres undergoing electrophoresis moves at the same velocity. 

U = u + V T .  (5.3) 

6. Equivalence of the migration velocity and the effective conductivity 
It was shown in $4 that the integral giving the three-body correction to the 

thermocapillary or the electrophoretic migration velocity can be reduced to the 
integral giving the two-body correction to the effective conductivity of the 
suspension. Here we shall derive a remarkable result that the migration velocity can 
be obtained simply from the effective thermal conductivity of the suspension of non- 
conducting particles for all particle concentrations. Specifically, taking the gradient 
of (2.14), we observe that 

and averaging this over the volume of the suspension V ,  we obtain 

V T  = h+Vq3, (6.1) 
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fiplitting the domain of integration into V,, the part of V occupied by fluid, and V,, 
the part occupied by particles, we arrive a t  

In  the notation of Jeffrey (1973), the last integral is simply equal to -cS, the average 
thermal dipole strength of the particles. 

Before we can average (2.15) we must remember that this is for particles in an 
infinite fluid, whereas in a container a backflow U, will exist which must be included 
in the equation. Thus (2.15) is replaced by 

u(x )  = -V#+ U,, 

U ( X )  = D = h +  U,, 
when x is outside a particle, 

when x is inside a particle. 

( 6 . 4 ~ )  

(6.46) 

Averaging this equation, we obtain 

1 
U = O = - -  V#dV+(l-C)U,+cU. (6.5) 

V l v *  

Using (6.3) to eliminate the unknown integral from (6.5) and then using (6.4b) to 
eliminate U, from (6.5), we obtain 

U =  h + c S =  K*.h, 

where K* is the effective conductivity of the medium. It should be noted that this 
result holds for any particle concentration, and allows us to use not only the existing 
direct calculations of K* but also bounds on the effective conductivity, such as the 
Hashin-Shtrikman bounds (Hashin & Shtrikman 1962) or more recently developed 
expressions (Torquato 1987). For example, using the results for an isotropic well- 
mixed suspension given in Jeffrey (1973), we obtain 

B = (1 -$C + 0.59 C' + . . .) h 
for the same suspension. 

7. Discussion 
The problems of electrophoresis and thermocapillarity provide an interesting 

challenge to the established methods for calculating the average properties of 
suspensions. Although it is possible to take refuge in the more general cases of 
conducting particles or particles of different sizes to distinguish between the 
alternatives here (in conjunction with the three-body problem), this is an unsatisfying 
solution from a general point of view since there is no guarantee that such 
generalizations will always be possible. Moreover, special cases are usually chosen for 
study because they are simpler than the general problem, so it is disappointing to 
have to return to a general situation in order to address the special case. One 
argument used successfully in the past to choose between alternative schemes 
consisted of appealing to higher approximations. Thus, conflicting convergent 
integral expressions for the two-body interaction were resolved by extending the 
analysis to three-body schemes. It seemed from the case of Chen & Acrivos (1978) 
that the second group expansion of Jeffrey (1974) would always be able to  distinguish 
between different possible treatments of the two-body problem by jumping to the 
three-body problem (another example of generalizing the problem). The particle 
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problems studied here, however, show that this is not so, because the entire series for 
the first and second group expansions can be searched without finding an integral 
that, converges in one case but not the other. Thus if we do not wish to leave the 
confines of the non-conducting particle problem, there is only the argument based on 
conservation of mass to choose between the mathematically possible alternatives. 

Experimental tests of the theory for the thermocapillary or electrophoretic 
velocity of particles in a suspension are extremely difficult. To begin with, problems 
arise because of buoyancy and polydispersity. In  addition most systems become 
opaque well before the particle number density is large enough to influence the 
average translational velocity and this makes i t  hard to measure the speed of 
individual particles. Nevertheless, Zukoski & Saville (1987, 1989) were able to 
prepare neutrally buoyant, transparent suspensions by removing the hemoglobin 
from red blood cells. A variety of particle shapes could be formed. Then tracer 
particles with the same electrokinetic properties as the red-blood-cell ghosts could be 
tracked microscopically over a wide range of particle concentrations. Zukoski & 
Saville measured the electrophoretic mobility of individual particles and the effective 
conductivity of the suspension over volume fractions ranging between 0 and 0.8. The 
effective conductivity was found to follow the Maxwell relation for slightly 
conducting particles while the mobility varied as (1 - c )  up to the highest volume 
fractions. The reasons for the difference between their results and the theory 
developed here are unclear. It may be due to  the slight conductivity of the particles, 
but further work is obviously necessary. 
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Postscript 
The references in the text acknowledge formally the influence Professor Batchelor 

had on this work, but, less formally, the interplay between physical and mathematical 
arguments discussed in this paper brings to the mind of one of us (D.J .J . )  an 
exchange that took place during a seminar a t  Cambridge in the mid 1970s. 
SPEAKER (justifying elaborate mathematical argument) : The trouble with a physical 
argument is that you may not get all the terms. 
GKB: No, that is the trouble with a bud physical argument. 
SEVERAL VOICES : How do you tell a good physical argument from a bad one 1 
GBK : That’s easy : you think. 
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